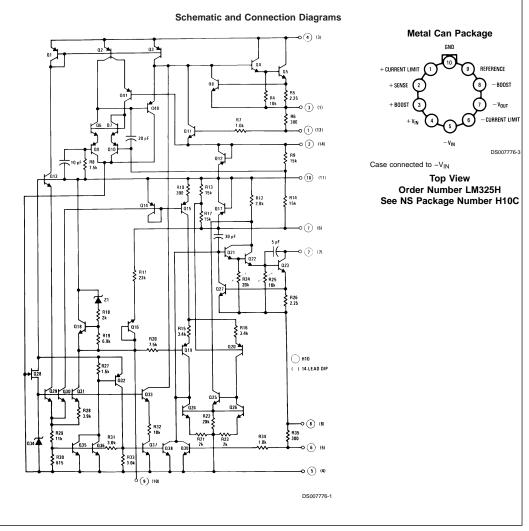
June 1999

LM325 Dual Voltage Regulator

National Semiconductor

LM325 Dual Voltage Regulator


General Description

This dual polarity tracking regulator is designed to provide balanced positive and negative output voltages at current up to 100 mA, and is set for $\pm 15V$ outputs. Input voltages up to $\pm 30V$ can be used and there is provision for adjustable current limiting. The device is available in two package types to accommodate various power requirements and temperature ranges.

Features

■ ±15V tracking outputs

- Output current to 100 mA
- Output voltage balanced to within 2%
- Line and load regulation of 0.06%
- Internal thermal overload protection
- Standby current drain of 3 mA
- Externally adjustable current limit
- Internal current limit

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Input Voltage	±30V
Forced V _O ⁺ (Min) (Note 2)	-0.5V
Forced V _O ⁻ (Max) (Note 2)	+0.5V
Power Dissipation (Note 3)	P _{MAX}

Output Short-Circuit Duration (Note 4)

Continuous

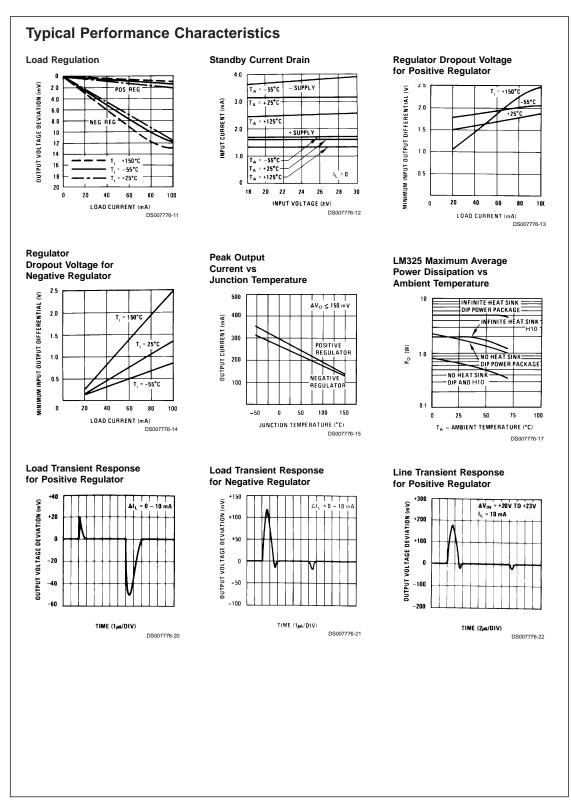
Operating Conditions

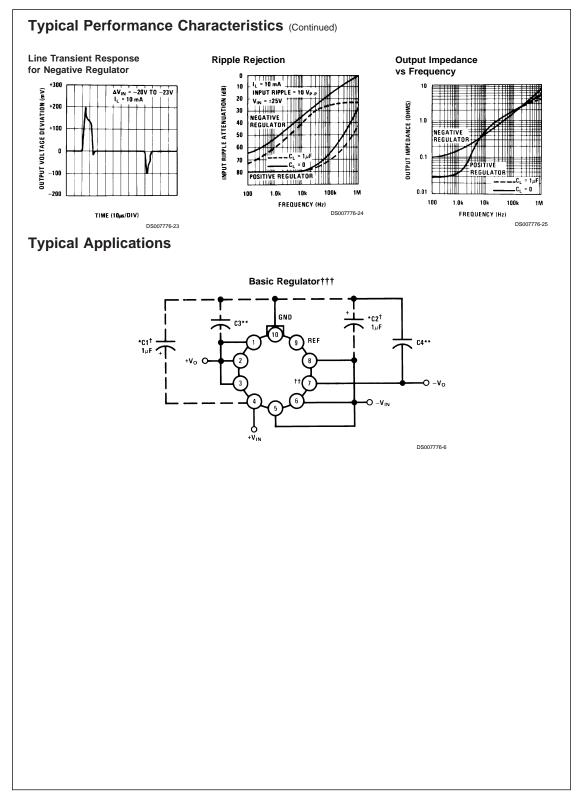
Operating Free Temperature Range	0°C to +70°C
Storage Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 10 sec.)	300°C

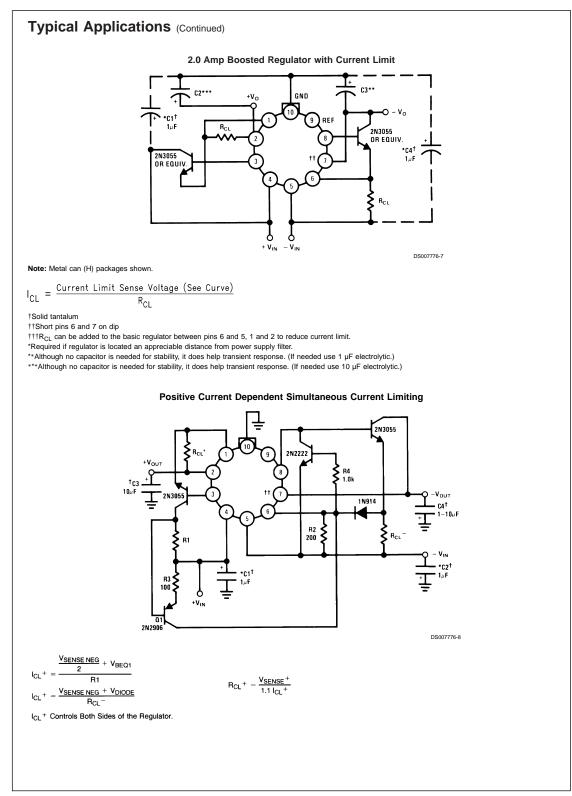
Electrical Characteristics

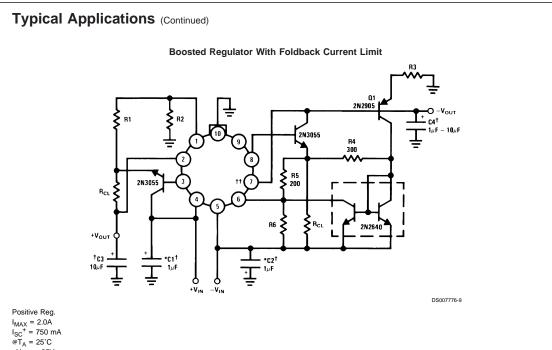
•

Parameter	Conditions	Min	Тур	Max	Units
Output Voltage	$T_j = 25^{\circ}C$	14.5	15	15.5	V
Input-Output Differential		2.0			V
Line Regulation	$V_{IN} = 18V \text{ to } 30V, I_{L} = 20 \text{ mA},$ $T_{j} = 25^{\circ}\text{C}$		2.0	10	mV
Line Regulation Over Temperature Range	$V_{IN} = 18V$ to 30V, $I_{L} = 20$ mA,		20	20	mV
Load Regulation Vo ⁺ Vo ⁻	$I_{L} = 0 \text{ mA to 50 mA}, V_{IN} = \pm 30V,$ T = $_{j} 25^{\circ}C$		3.0 5.0	10 10	mV mV
Load Regulation Over Temperature Range	$I_{L} = 0$ mA to 50 mA, $V_{IN} = \pm 30V$				
V ₀ + V ₀ -			4.0 7.0	20 20	mV mV
Output Voltage Balance	$T_j = 25^{\circ}C$			±300	mV
Output Voltage Over Temperature Range	$\begin{split} P &\leq P_{MAX}, \ 0 \leq I_O \leq 50 \ \text{mA}, \\ 18V &\leq V_{IN} \leq 30 \end{split}$	14.27		15.73	V
Temperature Stability of Vo			±0.3		%
Short Circuit Current Limit	$T_i = 25^{\circ}C$		260		mA
Output Noise Voltage	T _j = 25°C, BW = 100 – 10 kHz		150		μVrms
Positive Standby Current	$T_j = 25^{\circ}C$		1.75	3.0	mA
Negative Standby Current	$T_j = 25^{\circ}C$		3.1	5.0	mA
Long Term Stability			0.2		%/kHr
Thermal Resistance Junction to Case (Note 5)					
LM325H			20		°C/W
Junction to Ambient	(Still Air)		215		°C/W
Junction to Ambient	(400 Lf/min Air Flow)		82		°C/W
Junction to Ambient LM325N	(Still Air)		90		°C/W

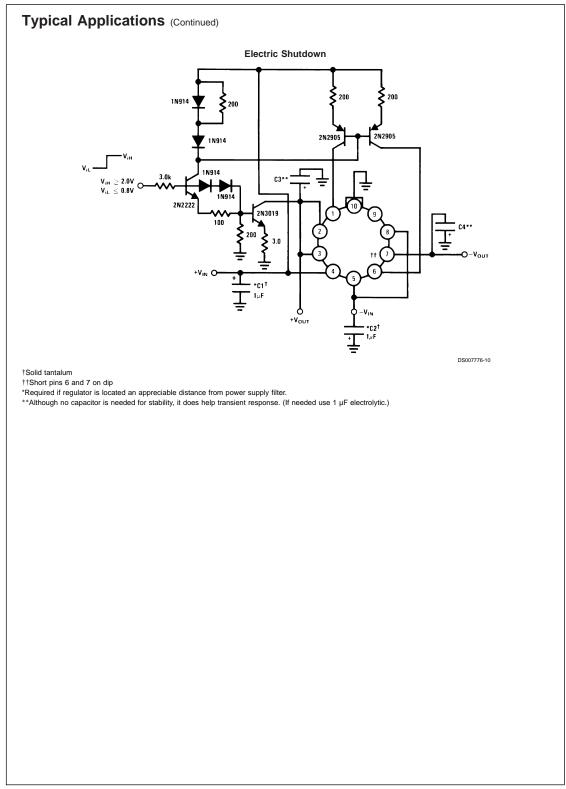

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

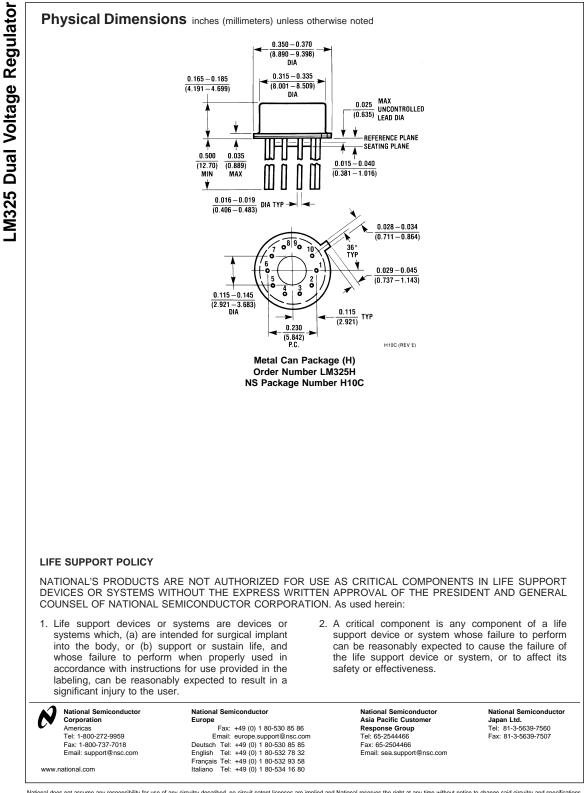

Note 2: That voltage to which the output may be forced without damage to the device.


Note 3: Unless otherwise specified these specifications apply for $T_j = 0^{\circ}C$ to +125°C on LM325, $V_{IN} = \pm 20V$, $I_L = 0$ mA, $I_{MAX} = 100$ mA, $P_{MAX} = 2.0W$ for the H10 Package.


Note 4: If the junction temperature exceeds 150°C, the output short circuit duration is 60 seconds.

Note 5: Without a heat sink, the thermal resistance junction to ambient of the H10 Package is about 155°C/W. With a heat sink, the effective thermal resistance can only approach the junction to case values specified, depending on the efficiency of the sink.





 $\begin{array}{l} \mbox{Positive Reg.} \\ I_{MAX} = 2.0A \\ I_{SC}^+ = 750 \mbox{ mA} \\ @T_A = 25'C \\ +V_{IN} = +25V \\ \mbox{Negative Reg.} \\ I_{MAX} = 2.0A \\ I_{SC} = 750 \mbox{ mA} \\ @T_A = 25'C \\ -V_{IN} = -25V \\ \end{array}$

Resistor Values

	125	126	
R1	18	20	
R2	310	180	
R3	2.4k	1.35k	
R6	300	290	
R _{CL}	0.7	0.9	

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.